Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559219

RESUMO

Real-time tracking of intracellular carbohydrates remains challenging. While click chemistry allows bio-orthogonal tagging with fluorescent probes, the reaction permanently alters the target molecule and only allows a single snapshot. Here, we demonstrate click-free mid-infrared photothermal (MIP) imaging of azide-tagged carbohydrates in live cells. Leveraging the micromolar detection sensitivity for 6-azido-trehalose (TreAz) and the 300-nm spatial resolution of MIP imaging, the trehalose recycling pathway in single mycobacteria, from cytoplasmic uptake to membrane localization, is directly visualized. A peak shift of azide in MIP spectrum further uncovers interactions between TreAz and intracellular protein. MIP mapping of unreacted azide after click reaction reveals click chemistry heterogeneity within a bacterium. Broader applications of azido photothermal probes to visualize the initial steps of the Leloir pathway in yeasts and the newly synthesized glycans in mammalian cells are demonstrated.

2.
J Vis Exp ; (204)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38465924

RESUMO

Understanding the metabolic activities of individual cells within complex communities is critical for unraveling their role in human disease. Here, we present a comprehensive protocol for simultaneous cell identification and metabolic analysis with the OPTIR-FISH platform by combining rRNA-tagged FISH probes and isotope-labeled substrates. Fluorescence imaging provides cell identification by the specific binding of rRNA-tagged FISH probes, while OPTIR imaging provides metabolic activities within single cells by isotope-induced red shift on OPTIR spectra. Using bacteria cultured with 13C-glucose as a test bed, the protocol outlines microbial culture with isotopic labeling, fluorescence in situ hybridization (FISH), sample preparation, optimization of the OPTIR-FISH imaging setup, and data acquisition. We also demonstrate how to perform image analysis and interpret spectral data at the single-cell level with high throughput. This protocol's standardized and detailed nature will greatly facilitate its adoption by researchers from diverse backgrounds and disciplines within the broad single-cell metabolism research community.


Assuntos
Bactérias , RNA Ribossômico , Humanos , Hibridização in Situ Fluorescente/métodos , Bactérias/genética , Sondas de Oligonucleotídeos , Isótopos
3.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464082

RESUMO

Neuromodulation is a powerful tool for fundamental studies in neuroscience and potential treatments of neurological disorders. Both photoacoustic (PA) and photothermal (PT) effects have been harnessed for non-genetic high-precision neural stimulation. Using a fiber-based device excitable by a nanosecond pulsed laser and a continuous wave laser for PA and PT stimulation, respectively, we systematically investigated PA and PT neuromodulation at the single neuron level. Our results show that to achieve the same level of cell activation recorded by Ca2+ imaging the laser energy needed for PA neurostimulation is 1/40 of that needed for PT stimulation. The threshold energy for PA stimulation is found to be further reduced in neurons overexpressing mechano-sensitive channels, indicating direct involvement of mechano-sensitive channels in PA stimulation. Electrophysiology study of single neurons upon PA and PT stimulation was performed by patch clamp recordings. Electrophysiological features stimulated by PA are distinct from those induced by PT, confirming that PA and PT stimulations operate through distinct mechanisms. These insights offer a foundation for rational design of more efficient and safer non-genetic neural modulation approaches.

4.
Theranostics ; 14(4): 1361-1370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389847

RESUMO

Histological examination is crucial for cancer diagnosis, however, the labor-intensive sample preparation involved in the histology impedes the speed of diagnosis. Recently developed two-color stimulated Raman histology could bypass the complex tissue processing to generates result close to hematoxylin and eosin staining, which is one of the golden standards in cancer histology. Yet, the underlying chemical features are not revealed in two-color stimulated Raman histology, compromising the effectiveness of prognostic stratification. Here, we present a high-content stimulated Raman histology (HC-SRH) platform that provides both morphological and chemical information for cancer diagnosis based on un-stained breast tissues. Methods: By utilizing both hyperspectral SRS imaging in the C-H vibration window and sparsity-penalized unmixing of overlapped spectral profiles, HC-SRH enabled high-content chemical mapping of saturated lipids, unsaturated lipids, cellular protein, extracellular matrix (ECM), and water. Spectral selective sampling was further implemented to boost the speed of HC-SRH. To show the potential for clinical use, HC-SRH using a compact fiber laser-based stimulated Raman microscope was demonstrated. Harnessing the wide and rapid tuning capability of the fiber laser, both C-H and fingerprint vibration windows were accessed. Results: HC-SRH successfully mapped unsaturated lipids, cellular protein, extracellular matrix, saturated lipid, and water in breast tissue. With these five chemical maps, HC-SRH provided distinct contrast for tissue components including duct, stroma, fat cell, necrosis, and vessel. With selective spectral sampling, the speed of HC-SRH was improved by one order of magnitude. The fiber-laser-based HC-SRH produced the same image quality in the C-H window as the state-of-the-art solid laser. In the fingerprint window, nucleic acid and solid-state ester contrast was demonstrated. Conclusions: HC-SRH provides both morphological and chemical information of tissue in a label-free manner. The chemical information detected is beyond the reach of traditional hematoxylin and eosin staining and heralds the potential of HC-SRH for biomarker discovery.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Amarelo de Eosina-(YS) , Hematoxilina , Lipídeos , Água , Proteínas da Matriz Extracelular
5.
Adv Sci (Weinh) ; 11(13): e2305212, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263873

RESUMO

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Receptores Depuradores Classe B/metabolismo , Colesterol/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Oxirredução
6.
Clin Cancer Res ; 30(6): 1175-1188, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38231483

RESUMO

PURPOSE: DNA methylation causes silencing of tumor-suppressor and differentiation-associated genes, being linked to chemoresistance. Previous studies demonstrated that hypomethylating agents (HMA) resensitize ovarian cancer to chemotherapy. NTX-301 is a highly potent and orally bioavailable HMA, in early clinical development. EXPERIMENTAL DESIGN: The antitumor effects of NTX-301 were studied in ovarian cancer models by using cell viability, stemness and ferroptosis assays, RNA sequencing, lipidomic analyses, and stimulated Raman spectroscopy. RESULTS: Ovarian cancer cells (SKOV3, IC50 = 5.08 nmol/L; OVCAR5 IC50 = 3.66 nmol/L) were highly sensitive to NTX-301 compared with fallopian tube epithelial cells. NTX-301 downregulated expression of DNA methyltransferases 1-3 and induced transcriptomic reprogramming with 15,000 differentially expressed genes (DEG, P < 0.05). Among them, Gene Ontology enrichment analysis identified regulation of fatty acid biosynthesis and molecular functions related to aldehyde dehydrogenase (ALDH) and oxidoreductase, known features of cancer stem cells. Low-dose NTX-301 reduced the ALDH(+) cell population and expression of stemness-associated transcription factors. Stearoyl-coenzyme A desaturase 1 (SCD), which regulates production of unsaturated fatty acids (UFA), was among the top DEG downregulated by NTX-301. NTX-301 treatment decreased levels of UFA and increased oxidized lipids, and this was blunted by deferoxamine, indicating cell death via ferroptosis. NTX-301-induced ferroptosis was rescued by oleic acid. In vivo, monotherapy with NTX-301 significantly inhibited ovarian cancer and patient-derived xenograft growth (P < 0.05). Decreased SCD levels and increased oxidized lipids were detected in NTX-301-treated xenografts. CONCLUSIONS: NTX-301 is active in ovarian cancer models. Our findings point to a new mechanism by which epigenetic blockade disrupts lipid homeostasis and promotes cancer cell death.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores Enzimáticos/uso terapêutico , Aldeído Desidrogenase/genética , DNA , Lipídeos/uso terapêutico
7.
Nat Methods ; 21(2): 342-352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38191931

RESUMO

Simultaneous spatial mapping of the activity of multiple enzymes in a living system can elucidate their functions in health and disease. However, methods based on monitoring fluorescent substrates are limited. Here, we report the development of nitrile (C≡N)-tagged enzyme activity reporters, named nitrile chameleons, for the peak shift between substrate and product. To image these reporters in real time, we developed a laser-scanning mid-infrared photothermal imaging system capable of imaging the enzymatic substrates and products at a resolution of 300 nm. We show that when combined, these tools can map the activity distribution of different enzymes and measure their relative catalytic efficiency in living systems such as cancer cells, Caenorhabditis elegans, and brain tissues, and can be used to directly visualize caspase-phosphatase interactions during apoptosis. Our method is generally applicable to a broad category of enzymes and will enable new analyses of enzymes in their native context.


Assuntos
Diagnóstico por Imagem , Nitrilas , Corantes
8.
Opt Express ; 31(25): 41202-41218, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087525

RESUMO

Optical coherence tomography (OCT) is a label-free, non-invasive 3D imaging tool widely used in both biological research and clinical diagnosis. Conventional OCT modalities can only visualize specimen tomography without chemical information. Here, we report a bond-selective full-field OCT (BS-FF-OCT), in which a pulsed mid-infrared laser is used to modulate the OCT signal through the photothermal effect, achieving label-free bond-selective 3D sectioned imaging of highly scattering samples. We first demonstrate BS-FF-OCT imaging of 1 µm PMMA beads embedded in agarose gel. Next, we show 3D hyperspectral imaging of up to 75 µm of polypropylene fiber mattress from a standard surgical mask. We then demonstrate BS-FF-OCT imaging on biological samples, including cancer cell spheroids and C. elegans. Using an alternative pulse timing configuration, we finally demonstrate the capability of BS-FF-OCT on imaging a highly scattering myelinated axons region in a mouse brain tissue slice.


Assuntos
Caenorhabditis elegans , Tomografia de Coerência Óptica , Animais , Camundongos , Tomografia de Coerência Óptica/métodos , Imageamento Tridimensional
9.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014294

RESUMO

Increasing evidence shows that many human-targeted drugs alter the gut microbiome, leading to implications for host health. However, much less is known about the mechanisms by which drugs target the microbiome and how drugs affect microbial function. Here we combined quantitative microbiome profiling, long-read metagenomics, stable isotope probing and single-cell chemical imaging to investigate the impact of two widely prescribed nervous system-targeted drugs on the gut microbiome. Ex vivo supplementation of physiologically relevant concentrations of entacapone or loxapine succinate to faecal samples significantly impacted the abundance of up to one third of the microbial species present. Importantly, we demonstrate that the impact of these drugs on microbial metabolism is much more pronounced than their impact on abundances, with low concentrations of drugs reducing the activity, but not the abundance of key microbiome members like Bacteroides, Ruminococcus or Clostridium species. We further demonstrate that entacapone impacts the microbiome due to its ability to complex and deplete available iron, and that microbial growth can be rescued by replenishing levels of microbiota-accessible iron. Remarkably, entacapone-induced iron starvation selected for iron-scavenging organisms carrying antimicrobial resistance and virulence genes. Collectively, our study unveils the impact of two under-investigated drugs on whole microbiomes and identifies metal sequestration as a mechanism of drug-induced microbiome disturbance.

10.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37904930

RESUMO

Single-cell sorting is essential to explore cellular heterogeneity in biology and medicine. Recently developed Raman-activated cell sorting (RACS) circumvents the limitations of fluorescence-activated cell sorting, such as the cytotoxicity of labels. However, the sorting throughputs of all forms of RACS are limited by the intrinsically small cross-section of spontaneous Raman scattering. Here, we report a stimulated Raman-activated cell ejection (S-RACE) platform that enables high-throughput single-cell sorting based on high-resolution multi-channel stimulated Raman chemical imaging, in situ image decomposition, and laser-induced cell ejection. The performance of this platform was illustrated by sorting a mixture of 1 µm polymer beads, where 95% yield, 98% purity, and 14 events per second throughput were achieved. Notably, our platform allows live cell ejection, allowing for the growth of single colonies of bacteria and fungi after sorting. To further illustrate the chemical selectivity, lipid-rich Rhodotorula glutinis cells were successfully sorted from a mixture with Saccharomyces cerevisiae, confirmed by downstream quantitative PCR. Furthermore, by integrating a closed-loop feedback control circuit into the system, we realized real-time single-cell imaging and sorting, and applied this method to precisely eject regions of interest from a rat brain tissue section. The reported S-RACE platform opens exciting opportunities for a wide range of single-cell applications in biology and medicine.

11.
Sci Adv ; 9(43): eadi2181, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889965

RESUMO

Stimulated Raman scattering (SRS) microscopy has shown enormous potential in revealing molecular structures, dynamics, and couplings in complex systems. However, the sensitivity of SRS is fundamentally limited to the millimolar level due to shot noise and the small modulation depth. To overcome this barrier, we revisit SRS from the perspective of energy deposition. The SRS process pumps molecules to their vibrationally excited states. The subsequent relaxation heats up the surroundings and induces refractive index changes. By probing the refractive index changes with a laser beam, we introduce stimulated Raman photothermal (SRP) microscopy, where a >500-fold boost of modulation depth is achieved. The versatile applications of SRP microscopy on viral particles, cells, and tissues are demonstrated. SRP microscopy opens a way to perform vibrational spectroscopic imaging with ultrahigh sensitivity.

12.
Res Sq ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37886499

RESUMO

Deep-tissue chemical imaging plays a vital role in biological and medical applications. Here, we present a shortwave infrared photothermal (SWIP) microscope for millimeter-deep vibrational imaging with sub-micron lateral resolution and nanoparticle detection sensitivity. By pumping the overtone transition of carbon-hydrogen bonds and probing the subsequent photothermal lens with shortwave infrared light, SWIP can obtain chemical contrast from polymer particles located millimeter-deep in a highly scattering phantom. By fast digitization of the optically probed signal, the amplitude of the photothermal signal is shown to be 63 times larger than that of the photoacoustic signal, thus enabling highly sensitive detection of nanoscale objects. SWIP can resolve the intracellular lipids across an intact tumor spheroid and the layered structure in millimeter-thick liver, skin, brain, and breast tissues. Together, SWIP microscopy fills a gap in vibrational imaging with sub-cellular resolution and millimeter-level penetration, which heralds broad potential for life science and clinical applications.

13.
Nat Commun ; 14(1): 6655, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863905

RESUMO

Clinical identification and fundamental study of viruses rely on the detection of viral proteins or viral nucleic acids. Yet, amplification-based and antigen-based methods are not able to provide precise compositional information of individual virions due to small particle size and low-abundance chemical contents (e.g., ~ 5000 proteins in a vesicular stomatitis virus). Here, we report a widefield interferometric defocus-enhanced mid-infrared photothermal (WIDE-MIP) microscope for high-throughput fingerprinting of single viruses. With the identification of feature absorption peaks, WIDE-MIP reveals the contents of viral proteins and nucleic acids in single DNA vaccinia viruses and RNA vesicular stomatitis viruses. Different nucleic acid signatures of thymine and uracil residue vibrations are obtained to differentiate DNA and RNA viruses. WIDE-MIP imaging further reveals an enriched ß sheet components in DNA varicella-zoster virus proteins. Together, these advances open a new avenue for compositional analysis of viral vectors and elucidating protein function in an assembled virion.


Assuntos
Ácidos Nucleicos , Estomatite Vesicular , Animais , Microscopia , Vírus da Estomatite Vesicular Indiana/genética , Vesiculovirus/genética , Proteínas Virais/genética , DNA
14.
RSC Adv ; 13(39): 27321-27332, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37711380

RESUMO

Gap-enhanced Raman tags (GERTs) have been widely used for surface-enhanced Raman scattering (SERS) imaging due to their excellent SERS performances. Here, we reported a synthetic strategy for novel gap-enhanced dumbbell-like nanoparticles with anisotropic shell coatings. Controlled shell growth at the tips of gold nanorods was achieved by using cetyltrimethylammonium bromide (CTAB) as a capping agent. A mechanism related to the shape-directing effects of CTAB was proposed to explain the findings. Optimized gap-enhanced gold dumbbells exhibited highly enhanced SERS responses compared to rod cores, with an enhancement ratio of 101.5. We further demonstrated that gap-enhanced AuNDs exhibited single-particle SERS sensitivity with an acquisition time as fast as 0.1 s per spectrum, showing great potential for high-speed SERS imaging.

15.
Sci Adv ; 9(33): eadg6061, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585522

RESUMO

Metabolic reprogramming in a subpopulation of cancer cells is a hallmark of tumor chemoresistance. However, single-cell metabolic profiling is difficult because of the lack of a method that can simultaneously detect multiple metabolites at the single-cell level. In this study, through hyperspectral stimulated Raman scattering (hSRS) imaging in the carbon-hydrogen (C-H) window and sparsity-driven hyperspectral image decomposition, we demonstrate a high-content hSRS (h2SRS) imaging approach that enables the simultaneous mapping of five major biomolecules, including proteins, carbohydrates, fatty acids, cholesterol, and nucleic acids at the single-cell level. h2SRS imaging of brain and pancreatic cancer cells under chemotherapy revealed acute and adapted chemotherapy-induced metabolic reprogramming and the unique metabolic features of chemoresistance. Our approach is expected to facilitate the discovery of therapeutic targets to combat chemoresistance. This study illustrates a high-content, label-free chemical imaging approach that measures metabolic profiles at the single-cell level and warrants further research on cellular metabolism.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Ácidos Graxos , Hidrogênio , Proteínas , Carbono , Análise Espectral Raman/métodos
16.
Adv Healthc Mater ; 12(25): e2300430, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37451259

RESUMO

A bidirectional brain interface with both "write" and "read" functions can be an important tool for fundamental studies and potential clinical treatments for neurological diseases. Herein, a miniaturized multifunctional fiber-based optoacoustic emitter (mFOE) is reported thatintegrates simultaneous optoacoustic stimulation for "write" and electrophysiology recording of neural circuits for "read". Because of the intrinsic ability of neurons to respond to acoustic wave, there is no requirement of the viral transfection. The orthogonality between optoacoustic waves and electrical field provides a solution to avoid the interference between electrical stimulation and recording. The stimulation function of the mFOE is first validated in cultured ratcortical neurons using calcium imaging. In vivo application of mFOE for successful simultaneous optoacoustic stimulation and electrical recording of brain activities is confirmed in mouse hippocampus in both acute and chronical applications up to 1 month. Minor brain tissue damage is confirmed after these applications. The capability of simultaneous neural stimulation and recording enabled by mFOE opens up new possibilities for the investigation of neural circuits and brings new insights into the study of ultrasound neurostimulation.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurônios/fisiologia , Estimulação Elétrica , Cálcio , Fenômenos Eletrofisiológicos
17.
J Phys Chem B ; 127(31): 6896-6902, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37494414

RESUMO

Stimulated Raman scattering (SRS) spectromicroscopy is a powerful technique that enables label-free detection of chemical bonds with high specificity. However, the low Raman cross section due to typical far-electronic resonance excitation seriously restricts the sensitivity and undermines its application to bio-imaging. To address this bottleneck, the electronic preresonance (EPR) SRS technique has been developed to enhance the Raman signals by shifting the excitation frequency toward the molecular absorption. A fundamental weakness of the previous demonstration is the lack of dual-wavelength tunability, making EPR-SRS only applicable to a limited number of species in the proof-of-concept experiment. Here, we demonstrate the EPR-SRS spectromicroscopy using a multiple-plate continuum (MPC) light source able to examine a single vibration mode with independently adjustable pump and Stokes wavelengths. In our experiments, the C═C vibration mode of Alexa 635 is interrogated by continuously scanning the pump-to-absorption frequency detuning throughout the entire EPR region enabled by MPC. The results exhibit 150-fold SRS signal enhancement and good agreement with the Albrecht A-term preresonance model. Signal enhancement is also observed in EPR-SRS images of the whole Drosophila brain stained with Alexa 635. With the improved sensitivity and potential to implement hyperspectral measurement, we envision that MPC-EPR-SRS spectromicroscopy can bring the Raman techniques closer to a routine in bio-imaging.

18.
Sci Adv ; 9(24): eadg8814, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315131

RESUMO

By optically sensing absorption-induced photothermal effect, mid-infrared (IR) photothermal (MIP) microscope enables super-resolution IR imaging of biological systems in water. However, the speed of current sample-scanning MIP system is limited to milliseconds per pixel, which is insufficient for capturing living dynamics. By detecting the transient photothermal signal induced by a single IR pulse through fast digitization, we report a laser-scanning MIP microscope that increases the imaging speed by three orders of magnitude. To realize single-pulse photothermal detection, we use synchronized galvo scanning of both mid-IR and probe beams to achieve an imaging line rate of more than 2 kilohertz. With video-rate speed, we observed the dynamics of various biomolecules in living organisms at multiple scales. Furthermore, by using hyperspectral imaging, we chemically dissected the layered ultrastructure of fungal cell wall. Last, with a uniform field of view more than 200 by 200 square micrometer, we mapped fat storage in free-moving Caenorhabditis elegans and live embryos.


Assuntos
Caenorhabditis elegans , Meios de Comunicação , Animais , Parede Celular , Frequência Cardíaca , Microscopia Confocal
19.
Light Sci Appl ; 12(1): 137, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277396

RESUMO

Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.

20.
Analyst ; 148(13): 2975-2982, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37305950

RESUMO

Vibrational microscopy based on coherent Raman scattering is a powerful tool for high-speed chemical imaging, but its lateral resolution is bound to the optical diffraction limit. On the other hand, atomic force microscopy (AFM) provides nano-scale spatial resolution, yet with lower chemical specificity. In this study, we leverage a computational approach called pan-sharpening to merge AFM topography images and coherent anti-Stokes Raman scattering (CARS) images. The hybrid system combines the advantages of both modalities, providing informative chemical mapping with ∼20 nm spatial resolution. CARS and AFM images were sequentially acquired on a single multimodal platform, which facilitates image co-localization. Our image fusion approach allowed for discerning merged neighboring features previously invisible due to the diffraction limit and identifying subtle unobservable structures with the input from AFM images. Compared to tip-enhanced CARS measurement, sequential acquisition of CARS and AFM images enables higher laser power to be used and avoids any tip damage caused by the incident laser beams, resulting in a significantly improved CARS image quality. Together, our work suggests a new direction for achieving super-resolution coherent Raman scattering imaging of materials through a computational approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...